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ON BIVARIATE POLYNOMIAL FACTORIZATION 
OVER FINITE FIELDS 

IGOR E. SHPARLINSKI 

ABSTRACT. This paper shows that a recently proposed approach of D. Q. Wan 
to bivariate factorization over finite fields, the univariate factoring algorithm of 
V. Shoup, and the new bound of this paper for the average number of irreducible 
divisors of polynomials of a given degree over a finite field can be used to design 
a bivariate factoring algorithm that is polynomial for "almost all" bivariate 
polynomials. 

1. INTRODUCTION 

Let p be a prime number and Fp be the finite field of p elements. The 
most important problem related to polynomials over finite fields is the problem 
of factorization of a given univariate or multivariate polynomial over lFp into 
factors irreducible over IFp (for simplicity, we consider only prime finite fields). 

In 1967 E. R. Berlekamp (see [2], [3], [12]) proved that a polynomial f of 
degree n over IFp can be factored over IFp in time (np)0(1) . 

Furthermore, a probabilistic polynomial algorithm (with computing time 
(n logp)0(1)) was presented in [4]. 

The asymptotically fastest probabilistic algorithm of [5], as well as another 
probabilistic algorithm of [6], uses an expected number 0(n2+8 logp) of arith- 
metic operations in IFp. The probabilistic algorithms of [1] require more com- 
puting time (but are still polynomial); however, they use fewer random bits. 

A similar situation holds for multivariate factorization. 
The multivariate factoring algorithms of [7], [9], [11] strongly rely on finding 

the shortest vectors in lattices. 
On the other hand, there are multivariate factoring algorithms that reduce the 

problem to bivariate or univariate factoring (e.g., see [8]). This can be done, for 
example, with a help of substitutions of the form xi = aix1 + bi, ai, bi E IFp, 
i = 2, ... , m, in the original polynomial. 

Another reduction of multivariate factorization to univariate factorization 
was proposed recently by D. Q. Wan in [16]. 

Here we show that this approach, the univariate factoring algorithm of [13], 
and the new bound below for the number of irreducible divisors of "almost all" 
polynomials over IFp[x] allow us to design a bivariate factoring algorithm that 
is polynomial for "almost all" bivariate polynomials. 
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Of course, we can assume that p is large enough with respect to n (otherwise, 
there exists a deterministic factoring algorithm for all polynomials, see [7], [9], 
[11], [15]). 

2. MAIN RESULT 

Theorem. Let p > n3 . Then there exists a deterministic algorithm that factors 
completely all except possibly 

o(p(n+l0)(n+2)/2 (log logp) -2) 

polynomials f(x, y) E Ip[x, y] of total degree n in O(n'37 logep + n2+8 log2 p) 
arithmetic operations in Fp . 

This theorem is an improvement of Corollary 4.2 of [16]. Indeed, first of 
all we design a deterministic algorithm instead of a probabilistic one; then we 
replace 

O(p(n+1)(n+2)/2 (log n>'!2) 

by 
Q(p(n+l1)(n+2)12 (log logp) -2) 

for the size of the excluded set of polynomials, and 

O(n4-89 log2 n logp) 

by 
0(n 3-7 log, p+ n2+, log2p) 

for the number of arithmetic operations. 
It should be noted that the original version given in [16] is not quite correct 

(random polynomials and random parameters of the algorithm were mixed). 

3. PROOF OF MAIN RESULT 

The proof is based on the following results. 

Lemma 1. There exists an algorithm that factors completely all polynomials f E 
Fp [x] of degree n except possibly some set 9Mn (P) Of 

19n (P)| = O(pn(nlogp)2) 

polynomials, using 0(n2+, log2 p) arithmetic operations in Jp . 
Proof. This is Theorem 4.1 of [13]. El 

Let Mn (p) and In (p) be the set of all (p - 1)pn polynomials of degree 
n over IFp and the subset of all monic irreducible polynomials from Mn(p), 
respectively. 

Let us denote by vp(f) the number of different monic irreducible divisors 
of a polynomial f E Mn (p), and let 

n 

in= Z l/i. 
i=l 

In [16] the weak bound vp(f) < (e + e)lnn for almost all polynomials 
f E Mn(p) was stated (by a very complicated method). Below we show that 
vp (f ) approximately equals ni for almost all polynomials f E Mn (p) . We use 
the very lucid Kubilius-Turan method. 
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Lemma 2. For any p and n we have 

Z (vp(f) -n )2 = Q(pn+l1n 
fEMn(p) 

Proof. Let us define the sums 

Sr= Pvr(f r= r 21, 2. 
fEMn (p) 

Using the known formula (see [12]) 

IIk(p)I = k'1 E# (k/d)pd, 
dlk 

we have for S1 
n n 

S1 = E 1 pn-k+l IIk(P)iPn-k+ 
k=I yIEIk(p) k=I 

n 

- Zpn-k+lk-l 1Z u(k/d)pd; 
k=I dlk 

hence 

s5 = pn+l,n + Q(pn+l). 

For S2 we have 
n n 

S2=ZE Z E E 1. 
k=I m=I OEIk(p) VYEIm(P) fEMn(p) 

(oIf, | lf 

Dividing the sum into two parts, one over (p : qV and the other over q =, 
we obtain 

S2 = Ik (P) I IIm (P) IPn-k-m+l 
k+m<n 

n 

- 5 Ik (P) IPn-2k+l + Z Ik(p)Ipn-k+l 
k<n/2 k=I 

= Z VIk(P)I VIm(P)IPn-k-m+l + o(pn+l) 
k+m<n 

Furthermore, 

E Ik (P) I IIm (p)I pn-k-m+l 
k+m<n 

E pn-k-m+l (km)- 1 51u(k/d)pd Z #(m/D)pD 
k+m<n dlk Dlm 

= pn-k-m+l (km)-1 Z*u(k/d)pd S 1(m/D)pD + 0(A), 
k, m<n dlk Dlm 
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where 
n 

A = pn+1 (km)-' = pn+l E m-l k-1 
k, m<n m=1 n>k>n-m 
k+m>n k+m>n 

n\ 

= 0 pn+1 E m-1 ln(l - m/n)) =(pn+) 
m=1 

It is clear that 

S Pn-k-m+l (km)-1 5,u(k/d)pd jl(m/D)pD =p-n-1S2 
kD m<n dlk Dlm 

Therefore, 

s2 = p-n- Is2 + o(Pn+l 

(Vp (f)-in )2 = S2 - 2NS 
+ 

pn+f1+l)2 
= Q(pfn+l )n) 

fEMn(p) 

The proof is complete. 0I 

Corollary. For all, except possibly O(pn+1A-2) polynomials f E Mn(p), the 
bound Ivp(f) - ln n < A(lnn) 1/2 holds. 

Proof of theorem. To apply the version of the algorithm of [161 that uses the 
univariate factoring algorithm of [13] (see Theorem 3.1 of [16]), we exclude 

Q(p(n+l)(n+2)/2-1) 

polynomials f(x, y) E Fp[x, y] of total degree n for which fn(x, 1) is not 
squarefree, the set of 

o(p(n+1l(n+2)12-1 n2 Iog2 p) 

polynomials f(x, y) E Fp[x, y] of total degree n for which fn(x, 1) is in the 
exclusive set 9tn (p) of Lemma 1, and 

o(p((n+l)(n+2)/2 (log logp)-2) 

polynomials f(x, y) E Fp[x, y] for which fn(x, 1) has more than ln n + 
c log logp monic irreducible divisors (set 

A = Eloglogp/(ln n)1/2 

in Corollary of Lemma 2). Since p > n3 this completes the proof. a 

There are many other possibilities for further developments of the ideas of 
[1 6]. For instance, other modifications of the theorem with the help of Corollary 
of Lemma 2 (with other A) and with the help of other univariate factoring 
algorithms (for instance, the algorithm of [14]) can be proved as well. 

Unfortunately, our results do not imply a good upper bound for the expected 
time of the algorithm for random input. On the other hand, combining the 
results of [8] and [13], one can get a deterministic algorithm that has expected 
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running time (n logp)0(1), assuming the input is chosen at random and uni- 
formly from polynomials of degree n over IFp . 
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